Author Archives: infidofblog

ANSYS training - infiDOF CoD Marketing - Online 6

infiDOF Principal Program – FEA – ANSYS

2 Feb , 2017,
infidofblog
, , , , , , , , , , , , , , , , , ,
No Comments

infiDOF Centre of Distinction (CoD)

Renewed Readiness for Industry for Training Support – Every engineer needs to be ready for industry at all times which requires continual renewal of readiness.

The Centre of Distinction is set up to uplift the quality of fresh graduates and working professionals to find themselves in a better mindset for career in engineering analysis. The mission is to make every outgoing candidate from CoD to be work ready by imparting excellence in the technical skills as well as the keep them motivated with continual improvement.

Goals:

  1. To impart technical skills of highest level to be competing with the world’s need for analysis engineer.
  2. To inculcate an inner urge to be continually updated.
  3. To offer Certification Programs recognized by the industry.

infiDOF Principal Program – FEA

This course is developed for candidates who want to define their career under analysis field. The topics covered under this program are as listed below.

Topics Covered

1.      Theoretical Background of Solid Mechanics

Solid mechanics is the study of the deformation and motion of solid materials under the action of forces. It is one of the fundamental applied engineering sciences, in the sense that it is used to describe, explain and predict many of the physical phenomena around us.

Solid mechanics is a vast subject. One reason for this is the wide range of materials which falls under its ambit: steel, wood, foam, plastic, foodstuffs, textiles, concrete, biological materials, and so on. Another reason is the wide range of applications in which these materials occur. For example, the hot metal being slowly forged during the manufacture of an aircraft component will behave very differently to the metal of an automobile which crashes into a wall at high speed on a cold day

2.      Basic FEM background

The finite element method (FEM) is a numerical technique for finding approximate solutions of partial differential equations (PDE) of physics and engineering by discretization of the domain of analysis into elements.

The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc.

3.      Material Models and its selection

This is the study of some elementary but very relevant deformable materials applied for various structures, for example beams and pressure vessels. Elasticity theory is used, in which a material is assumed to undergo small deformations when loaded and, when unloaded, returns to its original shape. The theory well approximates the behavior of most real solid materials at low loads, and the behavior of the “engineering materials”, for example steel and concrete, right up to fairly high loads.

More advanced theories of deformable solid materials include

Plasticity theory, which is used to model the behavior of materials which undergo permanent deformations, which means pretty much anything loaded high enough

Viscoelasticity theory, which models well materials which exhibit many “fluid-like” properties, for example plastics, skin, wood and foam

Visco-plasticity theory, which is a combination of viscoelasticity and plasticity, and is good for materials like mud and gels, Etc.

4.      Familiarization of the tool for its usage

  1. Units and Material Models
  2. Geometry Generation and repair
  3. Meshing and contacts
  4. Boundary conditions
  5. Solution and settings
  6. Post-processing
  7. Troubleshooting

5.      Static Structural Analysis

A static analysis calculates the effects of steady loading conditions on a structure, while ignoring inertia and damping effects, such as those caused by time-varying loads. A static analysis can, however, include steady inertia loads (such as gravity and rotational velocity), and time-varying loads that can be approximated as static equivalent loads (such as the static equivalent wind and seismic loads commonly defined in many building codes).

Static structural analysis determines the displacements, stresses, strains, and forces in structures or components caused by loads that do not induce significant inertia and damping effects. Steady loading and response conditions are assumed; that is, the loads and the structure’s response are assumed to vary slowly with respect to time.

The types of loading that can be applied in static analysis include;

  • Externally applied forces and pressures
  • Steady-state inertial forces
  • Imposed non zero displacements

6.      Thermal Analysis

Thermal Analysis is a technique that studies the properties of materials as they change with temperature. Most industrial application and equipment need thermal effects to be modeled and check for its integrity. Heat flux, convection, conduction, radiation and various other het related inputs are studied and applied.

7.      Coupled field thermo-mechanical Analysis

A sequentially coupled physics analysis is the combination of analyses from different engineering disciplines which interact to solve a global engineering problem. When the input of one physics analysis depends on the results from another analysis, the analyses are coupled.”

Thus, each different physics environment must be constructed separately so they can be used to determine the coupled physics solution. However, it is important to note that a single set of nodes will exist for the entire model. By creating the geometry in the first physical environment, and using it with any following coupled environments, the geometry is kept constant.

Although the geometry must remain constant, the element types can change. For instance, thermal elements are required for a thermal analysis while structural elements are required to determine the stress in the link. It is important to note, however that only certain combinations of elements can be used for a coupled physics analysis.

8.      Transient Analysis

Transient dynamic analysis (sometimes called time-history analysis) is a technique used to determine the dynamic response of a structure under the action of any general time-dependent loads. You can use this type of analysis to determine the time-varying displacements, strains, stresses, and forces in a structure as it responds to any combination of static, transient, and harmonic loads. The time scale of the loading is such that the inertia or damping effects are considered to be important.

A transient dynamic analysis is more involved than a static analysis because it generally requires more computer resources and more of your resources, in terms of the “engineering” time involved. You can save a significant amount of these resources by doing some preliminary work to understand the physics of the problem. For example, you can, analyze a simpler model first. A model of beams, masses, and springs can provide good insight into the problem at minimal cost. This simpler model may be all you need to determine the dynamic response of the structure

9.      Non-linear Analysis

All physical processes are inherently nonlinear to a certain extent. For example, when you stretch a rubber band, it gets harder to pull as the deflection increases; or when you flex a paper clip, permanent deformation is achieved. Several common every day applications like these exhibit either large deformations and/or inelastic material behavior. Failure to account for nonlinear behavior can lead to product failures, safety issues, and unnecessary cost to product manufacturers.

Nonlinear response could be caused by any of several characteristics of a system, like large deformations and strains, material behavior or the effect of contact or other boundary condition nonlinearities. In reality many structures exhibit combinations of these various nonlinearities.

  1. Geometric nonlinearity

Structures whose stiffness is dependent on the displacement which they may undergo are termed geometrically nonlinear. Geometric nonlinearity accounts for phenomena such as the stiffening of a loaded clamped plate, and buckling or ‘snap-through’ behavior in slender structures or components. Without taking these geometric effects into account, a computer simulation may fail to predict the real structural behavior.

  1. Material Nonlinearity

Material Nonlinearity refers to the ability for a material to exhibit a nonlinear stress-strain (constitutive) response. Elasto-plastic, hyperelastic, crushing, and cracking are good examples, but this can also include temperature and time-dependent effects such as visco-elasticity or visco-plasticity (creep). Material nonlinearity is often, but not always, characterized by a gradual weakening of the structural response as an increasing force is applied, due to some form of internal decomposition.

  1. Contact Nonlinearity

When considering either highly flexible components, or structural assemblies comprising multiple components, progressive displacement gives rise to the possibility of either self or component-to-component contact. This characterizes to a specific class of geometrically nonlinear effects known collectively as boundary condition or ‘contact’ nonlinearity. In boundary condition nonlinearity the stiffness of the structure or assembly may change considerably when two or more parts either contact or separate from initial contact. Examples include bolted connections, toothed gears, and different forms of sealing or closing mechanisms.

10.  Composite Structures Analysis

The present quite dynamic course of technology is causing the need to seek new structural materials with different properties which is impossible to obtain with traditional materials. The group of materials are becoming more widely used may include various types of composite materials. Their intensive development dates back to 1960 years of the twentieth century, when it began to use multi-layer polymer fiber composites, called laminates. Structures which were made using this technology compared to traditional materials are characterized by a much smaller weight and can have perfect strength parameters. Therefore they are finding wide applying in such fields at present as: aerospace, automotive, shipbuilding, manufacture of sports equipment and more.

 

Flexibility in shaping the parameters of composites makes it practically every structure made in this technology requires an individual design process of composite material. This leads to the formation of a variety of materials, the detailed characteristics such as elastic constant and strength characteristics should be known before applying them. It should also be noted that the change of geometric characteristics of the composite material can cause a change in its mechanical properties and may even receive additional sheet. Each of the newly formed composite requires individual examination designed to determine its basic characteristics such as strength and elastic.

 

The process of research and analysis of structural elements made of composites are divided into two separate processes. The first closely linked to computer modeling and simulation, and the second related to the experimental tests performed on the bench.

11.  Fatigue & Crack Analysis

When structures are subjected to repeated loading and unloading due to material fatigue, they can fail at loads below the static limit. The classical stress- and strain-life methods relate a stress or strain amplitude to a fatigue lifetime. Together with the stress-based and the strain-based critical plane methods, you can evaluate the high-cycle and low-cycle fatigue regime. In applications involving nonlinear materials, you can use energy-based methods or Coffin-Manson type models to simulate thermal fatigue. When dealing with variable loads, the accumulated damage can be calculated from the load history and the fatigue limit.

The fatigue load cycle can be simulated in solid bodies, plates, shells, multi-bodies, applications involving thermal stress and deformation, and even on piezoelectric devices. In order to improve computational efficiency when dealing with subsurface or surface initiated fatigue, a fatigue evaluation can be performed on domains, boundaries, lines, and in points.

Crack growth is on the atomic level breakage and separation of the bonds linking the atoms and/or movement and gathering of dislocations (imperfections in the atomic structure). Thus, new surfaces are created in the solid as the crack nucleates and continues to grow. This can be interpreted as an adaption of the material to an applied load of a critical level.

12.  Troubleshooting

Debugging the errors both in terms of physics of the problem and the software related issues needs to be addressed which arise during the simulation. Various error mitigation techniques will be explained as when it is encountered during the simulation of the above modules

13.  Technical Presentation

Representing the technical details and solutions of the project/problem is very important activity for a simulation engineer as it has to be communicated with peers, experts and clients. Adequate time will be spent to inculcate the need for good presentation and presentation techniques.

Minimum hours required: 120 hours

Case studies:

  1. 2 cases as per the domain chosen by candidates
    1. Problems which interests the candidate out of the above mentioned modules of simulation
  2. 2 cases as per the domain chosen by infiDOF

Certificate:

  1. Only after successful completion of case studies and a personnel interview

Mode of Training

The training is done through experienced professionals from the industry with frequent guest lectures by working professionals and consultants based on the need.

  1. Offline – Class room training
  2. Online

Available Schedules

  1. Classroom Schedules
    1. Weekdays – Day – Suitable for Fresh Graduates
    2. Weekdays – Evening – Suitable for undergraduates and working professionals
    3. Weekends – Suitable for working professionals
  2. Online – Anytime

Cost

INR 18,000/-

Software Used

ANSYS 17

Register Now

ANSYS Certification training - infiDOF jpg

infiDOF Foundation Program – FEA – ANSYS

Feb , 2017,
infidofblog
, , , , , , , , , , , , , , , , ,
No Comments

infiDOF – Centre of Distinction (CoD)

Renewed Readiness for Industry for Training Support – Every engineer needs to be ready for industry at all times which requires continual renewal of readiness.

The Centre of Distinction is set up to uplift the quality of fresh graduates and working professionals to find themselves in a better mindset for career in engineering analysis. The mission is to make every outgoing candidate from CoD to be work ready by imparting excellence in the technical skills as well as the keep them motivated with continual improvement.

Goals:

  1. To impart technical skills of highest level to be competing with the world’s need for analysis engineer.
  2. To inculcate an inner urge to be continually updated.
  3. To offer Certification Programs recognized by the industry.

infiDOF Foundation Program – FEA – ANSYS

This course is developed for candidates who want to define their career under analysis field. The topics covered under this program are as listed below.

Topics Covered

1.      Theoretical Background of Solid Mechanics

Solid mechanics is the study of the deformation and motion of solid materials under the action of forces. It is one of the fundamental applied engineering sciences, in the sense that it is used to describe, explain and predict many of the physical phenomena around us.

Solid mechanics is a vast subject. One reason for this is the wide range of materials which falls under its ambit: steel, wood, foam, plastic, foodstuffs, textiles, concrete, biological materials, and so on. Another reason is the wide range of applications in which these materials occur. For example, the hot metal being slowly forged during the manufacture of an aircraft component will behave very differently to the metal of an automobile which crashes into a wall at high speed on a cold day

2.      Basic FEM background

The finite element method (FEM) is a numerical technique for finding approximate solutions of partial differential equations (PDE) of physics and engineering by discretization of the domain of analysis into elements.

The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc.

3.      Material Models and its selection

This is the study of some elementary but very relevant deformable materials applied for various structures, for example beams and pressure vessels. Elasticity theory is used, in which a material is assumed to undergo small deformations when loaded and, when unloaded, returns to its original shape. The theory well approximates the behavior of most real solid materials at low loads, and the behavior of the “engineering materials”, for example steel and concrete, right up to fairly high loads.

More advanced theories of deformable solid materials include

Plasticity theory, which is used to model the behavior of materials which undergo permanent deformations, which means pretty much anything loaded high enough

Viscoelasticity theory, which models well materials which exhibit many “fluid-like” properties, for example plastics, skin, wood and foam

Visco-plasticity theory, which is a combination of viscoelasticity and plasticity, and is good for materials like mud and gels, Etc.

4.      Familiarization of the tool for its usage

  1. Units and Material Models
  2. Geometry Generation and repair
  3. Meshing and contacts
  4. Boundary conditions
  5. Solution and settings
  6. Post-processing
  7. Troubleshooting

5.      Static Structural Analysis

A static analysis calculates the effects of steady loading conditions on a structure, while ignoring inertia and damping effects, such as those caused by time-varying loads. A static analysis can, however, include steady inertia loads (such as gravity and rotational velocity), and time-varying loads that can be approximated as static equivalent loads (such as the static equivalent wind and seismic loads commonly defined in many building codes).

Static structural analysis determines the displacements, stresses, strains, and forces in structures or components caused by loads that do not induce significant inertia and damping effects. Steady loading and response conditions are assumed; that is, the loads and the structure’s response are assumed to vary slowly with respect to time.

The types of loading that can be applied in static analysis include;

  • Externally applied forces and pressures
  • Steady-state inertial forces
  • Imposed non zero displacements

6.      Thermal Analysis

Thermal Analysis is a technique that studies the properties of materials as they change with temperature. Most industrial application and equipment need thermal effects to be modeled and check for its integrity. Heat flux, convection, conduction, radiation and various other het related inputs are studied and applied.

7.      Coupled field thermo-mechanical Analysis

A sequentially coupled physics analysis is the combination of analyses from different engineering disciplines which interact to solve a global engineering problem. When the input of one physics analysis depends on the results from another analysis, the analyses are coupled.”

Thus, each different physics environment must be constructed separately so they can be used to determine the coupled physics solution. However, it is important to note that a single set of nodes will exist for the entire model. By creating the geometry in the first physical environment, and using it with any following coupled environments, the geometry is kept constant.

Although the geometry must remain constant, the element types can change. For instance, thermal elements are required for a thermal analysis while structural elements are required to determine the stress in the link. It is important to note, however that only certain combinations of elements can be used for a coupled physics analysis.

 

8.      Fatigue Analysis

When structures are subjected to repeated loading and unloading due to material fatigue, they can fail at loads below the static limit. The classical stress- and strain-life methods relate a stress or strain amplitude to a fatigue lifetime. Together with the stress-based and the strain-based critical plane methods, you can evaluate the high-cycle and low-cycle fatigue regime. In applications involving nonlinear materials, you can use energy-based methods or Coffin-Manson type models to simulate thermal fatigue. When dealing with variable loads, the accumulated damage can be calculated from the load history and the fatigue limit.

The fatigue load cycle can be simulated in solid bodies, plates, shells, multi-bodies, applications involving thermal stress and deformation, and even on piezoelectric devices. In order to improve computational efficiency when dealing with subsurface or surface initiated fatigue, a fatigue evaluation can be performed on domains, boundaries, lines, and in points.

9.      Troubleshooting

Debugging the errors both in terms of physics of the problem and the software related issues needs to be addressed which arise during the simulation. Various error mitigation techniques will be explained as when it is encountered during the simulation of the above modules

10.  Technical Presentation

Representing the technical details and solutions of the project/problem is very important activity for a simulation engineer as it has to be communicated with peers, experts and clients. Adequate time will be spent to inculcate the need for good presentation and presentation techniques.

Minimum hours required: 80 hours

Case studies:

  1. 2 cases as per the domain chosen by infiDOF

Certificate:

  1. Only after successful completion of case studies and a personnel interview

Mode of Training

The training is done through experienced professionals from the industry with frequent guest lectures by working professionals and consultants based on the need.

  1. Offline – Class room training
  2. Online

Available Schedules

  1. Classroom Schedules
    1. Weekdays – Day – Suitable for Fresh Graduates
    2. Weekdays – Evening – Suitable for undergraduates and working professionals
    3. Weekends – Suitable for working professionals
  2. Online – Anytime

Cost

INR 10,000/-

Software Used

ANSYS 17

Register Now

 

First of their kind Gas Turbine Workshops in India

29 Dec , 2015,
infidofblog
, , , , , , , , , , ,
No Comments




infiDOF



For Registration and Other Details
Please Contact:
Email:contact@infidof.com

Ph No: +91-9916230217, +91-9632184948

CFD Workshops to Make Every Participant a World-Class CFD Professional

Today CFD is being recognized greater than ever before as an enabler for better product design leading to better opportunities for the product designers. We, at infiDOF, are delighted to schedule three CFD workshops by Dr. Bijay Sultanian, an international CFD expert & trainer.

Towards ensuring better contributions of CFD practitioners, the key goals of these workshops are:

  1. To develop strong physics-based & solution-robust CFD modeling capability for compressible flow with heat transfer
  2. To develop an ability to interpret results from CFD simulations correctly for design applications
  3. To develop skills to hand-calculate compressible flow results to perform sanity-checks of predictions
  4. To improve engineering productivity with reduced design cycle time

About Dr. Bijay Sultanian

Dr. Bijay Sultanian is an international authority in gas turbine heat transfer, secondary air systems, and Computational Fluid Dynamics (CFD). Dr. Sultanian is Founder & Managing Member of Takaniki Communications, LLC, (www.takaniki.com) a provider of high impact, web-based and live technical training programs for corporate engineering teams. Dr. Sultanian is also an Adjunct Professor at the University of Central Florida, where he has been teaching graduate-level courses in Turbomachinery and Fluid Mechanics since 2006. During his 30+ years in the gas turbine industry, Dr. Sultanian has worked in and led technical teams at a number of organizations, including Allison Gas Turbines (now Rolls-Royce), GE Aircraft Engines (now GE Aviation), GE Power Generation (now GE Power & Water), and Siemens Energy (now Siemens Power & Gas). He has developed several physics-based improvements to legacy heat transfer and fluid systems design methods, including new tools to analyze critical high-temperature components with and without rotation. He particularly enjoys training large engineering teams at prominent firms around the globe on cutting-edge technical concepts and engineering and project management best practices.His graduate textbook Fluid Mechanics: An Intermediate Approach has been published by Taylor & Francis (CRC Press) on July 28, 2015. Read More..

About infiDOF

We are an Engineering Organization set up with the sole purpose of Enhancing Engineering in all its infinite ways that it gets executed world over through building up & nurturing “infiDOF Ecosystem” – Universal set of all those who operate in the Engineering Domain, e.g. OEMs, Service Providers, Training Institutes, Colleges, Resources, etc.

Workshop Schedule Details

Modeling Rotating Compressible Flows in Gas Turbine Internal Cooling Design: One-Dimensional CFD Methodology. Read More..

Monday, January 18, 2016; 8:00 am – 5:00 pm


INR 5,000/-

Modeling Secondary Air Systems in Gas Turbine Design: One-Dimensional CFD Methodology. Read More..

Wednesday, January 20, 2016; 8:00 am – 5:00 pm


INR 5,000/-

High-Performance Aerodynamic Design of a Gas Turbine Exhaust Diffuser: CFD Technology Application.
Read More..

Friday, January 22, 2016; 8:00 am – 5:00 pm


INR 5,000/-

Register To infiDOF



CFD Workshops by Dr. Bijay Sultanian – A World Renowned CFD Professional & Trainer

9 Dec , 2015,
infidofblog
No Comments

 

 

For Registration and Other Details
Please Contact:
Email:contact@infidof.com

Ph No: +91-9916230217, +91-9632184948

CFD Workshops to Make Every Participant a World-Class CFD Professional

Today CFD is being recognized greater than ever before as an enabler for better product design leading to better opportunities for the product designers. We, at infiDOF, are delighted to schedule three CFD workshops by Dr. Bijay Sultanian, an international CFD expert & trainer.

Towards ensuring better contributions of CFD practitioners, the key goals of these workshops are:

  1. To develop strong physics-based & solution-robust CFD modeling capability for compressible flow with heat transfer
  2. To develop an ability to interpret results from CFD simulations correctly for design applications
  3. To develop skills to hand-calculate compressible flow results to perform sanity-checks of predictions
  4. To improve engineering productivity with reduced design cycle time

About Dr. Bijay Sultanian

Dr. Bijay Sultanian is an international authority in gas turbine heat transfer, secondary air systems, and Computational Fluid Dynamics (CFD). Dr. Sultanian is Founder & Managing Member of Takaniki Communications, LLC, (www.takaniki.com) a provider of high impact, web-based and live technical training programs for corporate engineering teams. Dr. Sultanian is also an Adjunct Professor at the University of Central Florida, where he has been teaching graduate-level courses in Turbomachinery and Fluid Mechanics since 2006. During his 30+ years in the gas turbine industry, Dr. Sultanian has worked in and led technical teams at a number of organizations, including Allison Gas Turbines (now Rolls-Royce), GE Aircraft Engines (now GE Aviation), GE Power Generation (now GE Power & Water), and Siemens Energy (now Siemens Power & Gas). He has developed several physics-based improvements to legacy heat transfer and fluid systems design methods, including new tools to analyze critical high-temperature components with and without rotation. He particularly enjoys training large engineering teams at prominent firms around the globe on cutting-edge technical concepts and engineering and project management best practices.His graduate textbook Fluid Mechanics: An Intermediate Approach has been published by Taylor & Francis (CRC Press) on July 28, 2015. Read More..

About infiDOF

We are an Engineering Organization set up with the sole purpose of Enhancing Engineering in all its infinite ways that it gets executed world over through building up & nurturing “infiDOF Ecosystem” – Universal set of all those who operate in the Engineering Domain, e.g. OEMs, Service Providers, Training Institutes, Colleges, Resources, etc.

Workshop Schedule Details

Modeling Rotating Compressible Flows in Gas Turbine Internal Cooling Design: One-Dimensional CFD Methodology. Read More..

Monday, January 18, 2016; 8:00 am – 5:00 pm


Click Here..

Modeling Secondary Air Systems in Gas Turbine Design: One-Dimensional CFD Methodology. Read More..

Wednesday, January 20, 2016; 8:00 am – 5:00 pm


Click Here..

High-Performance Aerodynamic Design of a Gas Turbine Exhaust Diffuser: CFD Technology Application.
Read More..

Friday, January 22, 2016; 8:00 am – 5:00 pm


Click Here..
Register To infiDOF

Engineering Outsourcing Business in India-51

14 Aug , 2015,
infidofblog
No Comments

Dear Friend,

Please refer our previous blog, Blog No. 50, in which we identified a few measures to overcome the challenges in Business Development.

Let’s review another important aspect in Engineering Business – “Ensuring good margins after paying well to the resources.” As you can see, there are two important phrases “ensuring good margins” and “paying well to the resources” – the “happiness” of an organization depends on the former, and that of resources on the later. Both are important for a “happy state of affairs”.

Let’s identify the factors on which margins depend:

  1. A good effort estimation with a clear understanding with the client on scope change
  2. Sound technical expertise and efficient processes to ensure that the actual effort is well within the effort estimated

What are the challenges with respect to the above?

Factor

Challenges

A good effort estimation with a clear understanding with the client on scope change (i)    No or limited prior experience

(ii)    Incomplete understanding of the scope

(iii)   Lacking in expertise to estimate

(iv)  Difficulties in having with a clear understanding with the client on scope change

Sound technical expertise and efficient processes to ensure that the actual effort is well within the effort estimated (i)     Lacking in expertise

(ii)    Lacking in best practices

(iii)   Superfluous elements in the processes (Quality / Project Management) taking “uncalled-for” extra effort

Do you see any other challenges?

We’ll look for measures to overcome these challenges in our next blog.

Respectfully yours,

Team infiDOF

#3068, 3rd Floor, 11th Main, 11th Cross, Off 80 ft Road, HAL II Stage, Indiranagar, Bangalore, India – 560008

Engineering Outsourcing Business in India-50

31 Jul , 2015,
infidofblog
No Comments

Dear Friend,

Please refer our previous blog, Blog No. 49, in which we identified the key challenges, as we see them, in Business Development. Let us now try to figure out ways to overcome them.

Sl. No.

Challenge

Measures to Overcome

1

Affording the cost of business development efforts which involves cost elements associated with travel to the locations of prospects, cost of free confidence-building pilot projects, etc. (i)      Ensure the success of returns by deploying right expertise, and processes

(ii)    Seek and leverage an external funding, if required

2

Availability of the experts to provide a prospect the much-needed initial confidence (i)      Have alignment with the experts as required

(ii)    Seek and leverage an external funding, if required

3

Building up expertise and infrastructure when “things are yet to work out (i)      Ensure the success of returns by deploying right expertise, and processes

(ii)    Seek and leverage an external funding, if required

4

Affording infrastructure ramp-up without the assurance of business volume sustenance (i)      Ensure the success of returns by deploying right expertise, and processes

(ii)    Seek and leverage an external funding, if required

5

Providing a lower-cost better-quality solution / service Deploy right expertise, and processes

6

Meeting the process requirements, including data security requirements, of a prospect Assess the process requirements, and deploy them in a direct way, i.e. exactly as required

7

Managing the discomforts in the early stages of a new business relationship Ensuring patience by an effective approach which includes in-depth understanding of the requirements

8

Payment terms of a new prospect (i)      Defining the payment terms explicitly

(ii)    Seek and leverage an external funding, if required (to be able to handle the impact of delayed payment)

As you can see, the measures are located around ensuring the “fruit of hard labor” while being supported in the “forming days”!

Do you see any other measures? We’ll, as usual, wait for your inputs…

Respectfully yours,

Team infiDOF

#3068, 3rd Floor, 11th Main, 11th Cross, Off 80 ft Road, HAL II Stage, Indiranagar, Bangalore, India – 560008

Engineering Outsourcing Business in India-49

15 Jul , 2015,
infidofblog
No Comments

Dear Friend,

It has been a while since our last blog on the 9th June…

However,  we have been thinking…thinking over again and again… gathering topics / issues that we need to discuss, deliberate on, and get off our track…

Please refer our previous blog, Blog No. 48, in which we identified measures to overcome obstacles in ensuring a Right Work Ambience enabling Happy Engineering.

Let’s discuss another important topic – Challenges in Business Development. As usual, let’s identify the “aspects of the problem” before we look for measures to address them. We see the following as the challenges:

(i)                  Affording the cost of business development efforts which involves cost elements associated with travel to the locations of prospects, cost of free confidence-building pilot projects, etc.

(ii)                Availability of the experts to provide a prospect the much-needed initial confidence

(iii)               Building up expertise and infrastructure when “things are yet to work out

(iv)              Affording infrastructure ramp-up without the assurance of business volume sustenance

(v)                Providing a lower-cost better-quality solution / service

(vi)              Meeting the process requirements, including data security requirements, of a prospect

(vii)             Managing the discomforts in the early stages of a new business relationship

(viii)           Payment terms of a new prospect

Do you see any other challenges? – Please do share.

In our next blog, we’ll look for measures to overcome these challenges…you and us together as usual!

Respectfully yours,

Team infiDOF

#3068, 3rd Floor, 11th Main, 11th Cross, Off 80 ft Road, HAL II Stage, Indiranagar, Bangalore, India – 560008

Engineering Outsourcing Business in India-48

9 Jun , 2015,
infidofblog
No Comments

Dear Friend,

Please refer our previous blog, Blog No. 47, in which we identified the obstacles (any other?) in ensuring a Right Work Ambience enabling Happy Engineering. We had mentioned that we would discuss what it would make it easy to ensure such a work ambience.

Obstacle

Measures to Overcome

Senior management lacking in clarity and confidence (i)   Setting up an organization with the clarity on the objectives

(ii)    Setting up an execution mechanism based on PDCA (Plan–Do–Check–Act)

Senior management losing real-time contact with the work force (i)   Scheduled regular interaction sessions

(ii) Senior management understanding the value of the work force in realizing the organization vision

Missing organization structure with defined roles & responsibilities (i)   Creating an organization structure with defined roles & responsibilities

(ii) Periodic re-visits to identify the change requirements in line with various dynamic factors

Difficult and / or ill-defined processes (i)   Identifying and defining processes

(ii) Periodic re-visits to identify the change requirements in line with various dynamic factors

Missing transparency in appraisal and reward process (i)   Setting up a good appraisal process

(ii) Periodic re-visits to identify the change requirements in line with various dynamic factors

Missing vision to ensure organizational growth to accommodate the growth of its work force (i)   Setting up a good organization growth plan

(ii) Periodic re-visits to identify the change requirements in line with work force aspirations

Missing organization stamina to work through difficulties & challenges (i)  Setting up an organization with the clarity on the objectives

(ii) Setting up an execution mechanism based on PDCA (Plan–Do–Check–Act)

 

As you can see, there is a clear need to “start well, and have a room for revision as we learn further” with, of course, a “keep it up” approach!

Do you agree?

Respectfully yours,

Team infiDOF

#3068, 3rd Floor, 11th Main, 11th Cross, Off 80 ft Road, HAL II Stage, Indiranagar, Bangalore, India – 560008

Engineering Outsourcing Business in India-47

29 May , 2015,
infidofblog
No Comments

Dear Friend,

Please refer our previous blog, Blog No. 46, in which we discussed a very important topic – Attrition – which has tremendous impact on the stability of – an organization, expertise development process, and a professional.

Let’s take up yet another very important topic – Work Ambience. In the previous blog, we have looked into its relation with attrition. Let’s look into how to ensure a right Work Ambience to ensure Happy Engineering – a state which will ensure the achievement of our objective (What?).

An engineering organization is like an ecosystem itself with multiple entities, like Technical Teams, Accounts, Human Resource, Procurement, Admin, etc. – working for a common purpose to service requirements towards growth of the organization and professional fulfillment of its work force. Now like for any other ecosystem to sustain, there is an absolute need for harmony and synergy among the different entities of an engineering organization. Having accepted it, let’s look at the obstacles in ensuring the fulfillment of this need:

(i)                  Senior management lacking in clarity and confidence

(ii)                Senior management losing real-time contact with the work force

(iii)               Missing organization structure with defined roles & responsibilities

(iv)              Difficult and / or ill-defined processes

(v)                Missing transparency in appraisal and reward process

(vi)              Missing vision to ensure organizational growth to accommodate the growth of its work force

(vii)             Missing organization stamina to work through difficulties & challenges

It takes a good start, and sustained effort to build anything worthwhile…so is the case here!

How to make it easy? – We’ll discuss it in our next blog.

Do share your thoughts…to help us think better before putting down the content in our next blog.

Respectfully yours,

Team infiDOF

#3068, 3rd Floor, 11th Main, 11th Cross, Off 80 ft Road, HAL II Stage, Indiranagar, Bangalore, India – 560008

contact@infidof.com

Engineering Outsourcing Business in India-46

15 May , 2015,
infidofblog
No Comments

Dear Friend,

Please refer our previous blog, Blog No. 45, in which we traced the link between International Labor Day and Engineering, and identified a few key factors which would help sustain a great Engineering Support Ecosystem.

Earlier in Blog No. 42, we proposed to take up various obstacles on the way of our achieving our Objective. Then we took up two very important obstacles – one, Gaps in Expertise, and second, Process Compliance.

Today let us take up one more obstacle – Attrition.

Before we look into the reasons for attrition, let’s think over its impact (so that we can look into the reasons with a greater sense of urgency). The primary impact is:

  • An organization loses a resource for whom it invested in training, on-job learning, familiarizing with its aspirations and operational framework, building up customer confidence, etc.
  • A resource loses a ground worked hard on and having to do ground work again.

It will help us to identify the reasons for attrition if we look at the details of a scenario in which “Attrition is just not possible”:

  • An ambience of respect and concern
  • An ambience of ease and focus
  • An ambience of professional challenges for personal growth
  • An ambience of business stability
  • Fair and rewarding Performance Appraisal System
  • Organizational sensitivity and effort for resource alignment with organization’s vision
  • Room for accommodating individual traits and aspirations

Do you see any other elements?

The actual scenario that exists is, generally speaking, far from being one in which “Attrition is just not possible”….

Let’s see how the actual scenario seems to be:

Ideal

Actual

An ambience of respect and concern An ambience of “Mind your work, we have no mind for you
An ambience of ease and focus An ambience of no focus, or an ambience of painful focus to meet timelines
An ambience of professional challenges for personal growth An ambience of money-making without caring for individual’s growth
Fair and rewarding Performance Appraisal System An irrelevant Appraisal System with very limited interest in keeping an individual delighted
Organizational sensitivity and effort for resource alignment with organization’s vision No sensitivity for individual’s alignment – “Fall in line, or get lost
Room for accommodating individual traits and aspirations Flat, conservative and unwise business model with no such room

 

…and hence the attrition-related discomforts – both for organizations and individuals!

A seed should attain its full growth when planted in a soil… We, as the farmers, have all that it takes to account for!

Let’s introspect further…It’s important!

Respectfully yours,

Team infiDOF

#3068, 3rd Floor, 11th Main, 11th Cross, Off 80 ft Road, HAL II Stage, Indiranagar, Bangalore, India – 560008

Please wait...

Subscribe to our newsletter

Want to be notified when our article is published? Enter your email address and name below to be the first to know.